

WebControl 32TM
Programmable Logic

Controller
Programming Guide

Version: 4.02.20

Hardware Version: 5.0.0, 6.0.0, 7.0.0

Firmware Version: 4.02.20

Firmware datastamp: 6/16/2017

Doc last modified: 6/16/2017

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(C) 2008-2013 CAI Networks, Inc. i

Table of Contents

1 Introduction .. 3

1.1 Scope .. 3

1.2 Table of Definitions ... 3

2 WebControlTM PLC Programming .. 5

2.1 The Basics of PLC Programming ... 5

2.2 WebControlTM PLC Instructions .. 6

2.3 WebControlTM PLC I/O Identifiers .. 10

2.4 WebControl PLC Examples .. 16

2.4.1 Example 1 Set Output based on condition .. 16

2.4.2 Example 2: Flash TTL output ... 17

2.4.3 Example 3: Push Button Input Control Output 17

2.4.4 Example 4: Send EMAIL ... 18

2.4.5 Example 5, Parallel I/O .. 18

2.4.6 Example 6, Sequential I/O ... 20

2.4.7 Example 7, Traffic Lights ... 20

2.4.8 Example 8, Time based Control .. 22

2.4.9 Example 9, Battery Charger .. 25

2.4.10 Example 10, RFID reader and browser Control 26

2.4.11 Example 11, Bitwise Operation ... 27

2.4.12 Example 12, Angle Calculation .. 27

2.4.13 Example 13, Non-Blocking Delay .. 27

2.4.14 Example 14, WEBSET to get server reply ... 28

2.4.15 Example 15, Server CGI Handles WEBSET 28

2.4.16 Example 16, USB key SAVE and LOAD functions 29

2.4.17 Example 17, USB LCD Display and Push Kay functions 30

2.4.18 Example 18, I2C PLC Programming ADS1115 31

2.4.19 Example 19, PING another host in PLC .. 32

2.4.20 Example 20, Display IP Address on UM216 .. 33

3 WebControlTM PLC FAQ .. 34

3.1 Login and Configuration .. 34

3.2 Temperature Sensor Support ... 34

3.3 Turn on/off TTL output from another programming language 35

3.4 Restart the board from http browser ... 36

3.5 Power Supply Requirement .. 36

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(C) 2008-2013 CAI Networks, Inc. ii

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(C) 2008-2013 CAI Networks, Inc. iii

1 Introduction
This document provides an overview of the technical aspects of Programming

WebControl32TM PLC. The WebControl 32 PLC Programming Guide is is very smilar

to the WebControl PLC User Guide in chapter 6. Function, usage and syntax as well

as many examples are provided there to help you get started. The PLC version of

firmware provides greater flexibility in I/O control; but in return, expects user to learn

programming concepts and write an assembly like PLC program. A PLC program

has the ability to read write and compare values of the available inputs, outputs,

variables and timers. With a PLC program loaded and running, WebControlTM PLC

can operate on its own, without a network connection. The PLC programming

module and programming guide are provided for a learn-on-your own experience.

Assistance in writing or debugging PLC code is not provided as part of the regular

technical support for WebControlTM PLC configuration.

1.1 Scope

The scope of this document is to be a guide for programming the features provided

by WebControl 32TM. The reader is expected to be technically competent in all the

technical areas within this document, and is strongly advised to play with example

PLC programs and to write small test PLC program to test out each PLC command.

1.2 Table of Definitions

The following table is a list of definitions used though out the document.

Definition Description

HTTP Hypertext transfer protocol
DNS Domain name server
SMTP Simple mail transport protocol
SNTP Simple network time protocol
1-wire Special bidirectional serial data bus from Maxim
RH Relative humidity
NetBios Human readable name used as an alternative to an IP address for

accessing the server on a network. E.g. http://WebControlTM
IP Internet protocol
DHCP Dynamic host configuration protocol
ROM Read only memory
PLC Programmable Logic Controller

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 5

2 WebControlTM PLC Programming
The WebControl 32TM PLC firmware can be programmed to execute programmable
logic sequences, including comparison and sub routines. WebControl 32TM PLC
uses assembly like PLC language. Its main program starts with “START” and finishes
with “END”. The PLC program is pasted into the web GUI. WebControl will
automatically store it into its EEPROM so that if recycle power will not lose the
program. The limitation of the WC32 PLC program size is 4000 line of code. The
support for PLC programming is not included in the free support for configuration of
WebControlTM PLC.

2.1 The Basics of PLC Programming

WebControl PLC program is NOT hard! We have included many examples toward
the end of this chapter. A PLC program is made up of main routine and optional
subroutines. “#” and “;” sign mark the beginning of comment, it will be removed
automatically during sending to the WC32 board.

The main routine is enclosed between mandatory START and END instructions e.g.

START
#main instructions go here
END

To change the logic flow, GOTO instruction can be used as unconditional jump from
one section of logic to another without call stack to return. CALLSUB instruction is
for unconditional logic flow that may return to the original call stack. BNZ and BZ are
conditional GOTO to branch to different section in logic. CNZ and CZ are conditional
CALLSUB instruction allowing returning to call stack address.

Both GOTO and CALLSUB use label to identify where to execute next instruction.
Label can be any string less than 10 characters. Label cannot be identical to any
instruction keyword. If sub routines are used then they are coded after the END of
the main routine body. Sub routines start at their label and must end with the
instruction RET e.g.

TEST_IO_SUB:
#instructions here
RET

Subroutines can be called from the main program and from within other subroutines.
Note that WebControl PLC has a return program address stack depth of 8 (or call
stack 8).

The program control block has a zero bit that is updated implicitly on TEST
instructions. This zero bit is set by any one of these TEST instructions: TSTEQ,
TSTNE, TSTGT, TSTLT, TSTGE, TSTLE, ANDT, ORT, XORT, ANDBT, ORBT,
XORBT, TSTB. Zero bit flag can be accessed by IO name ZBIT. This zero bit can
also be used implicitly when using branch and call instructions, like BZ, BNZ, CZ,
CNZ. E.g. the following test instruction yields a Boolean result which will implicitly set

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 6

the state of the zero bit. Next a branch instruction is used which branches on the
state of the zero bit.

 TSTEQ IP1 1 # sets zero bit based on the result of the test instruction
 BNZ label # branches to label if zero bit is non-zero

Format of instructions:

label: (optional)
 opcode operands

Labels must be terminated with a colon ':' and can be a maximum of 10 characters.

2.2 WebControlTM PLC Instructions

The following symbols are used in the table below:

d = destination

a,b..c = operands

() = optional, any operand enclosed in parenthesis mean it is an optional operand.

[] = non-blocking delay operator optional to TTL input/output and VARs. 32 bit

unsigned number, represent resolution of 0.001 seconds. When the delay operator is

used on input operands the current value of that input is only used if it has had that

value for greater than the delay period specified between the brackets. When this

operator is used on an output operand the output value is only set for the period

specified in the brackets. All delay periods are specified in milliseconds. Note that

accuracy and timer resolution is approximately 100ms, even though the delay

operator value is in unit of 1mS.

Opcode Operands Description
START Start of main program
PROTECTED Must be 2nd Opcode in PLC, will not display PLC code.
TSTEQ a[] b[] (d[]) Tests if a is equal to b. Boolean result loaded into optional

destination (d). Zero bit updated with result. If test
evaluates to false then the next instruction is skipped.

TSTNE a[] b[] (d[]) Tests if a is NOT equal to b. Boolean result loaded into
optional destination (d). Zero bit updated with result. If test
evaluates to false then the next instruction is skipped.

TSTGT a[] b[] (d[]) Test if a is greater than b. Boolean result loaded into
optional destination (d). Zero bit updated with result. If test
evaluates to false then the next instruction is skipped.

TSTLT a[] b[] (d[]) Tests if a is less than b. Boolean result loaded into optional
destination (d). Zero bit updated with result. If test
evaluates to false then the next instruction is skipped.

TSTGE a[] b[] (d[]) Tests if a is greater than OR equal to b. Boolean result
loaded into optional destination (d). Zero bit updated with

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 7

result. If test evaluates to false then the next instruction is
skipped.

TSTLE a[] b[] (d[]) Tests if a is less than OR equal to b. Boolean result loaded
into optional destination (d). Zero bit updated with result. If
test evaluates to false then the next instruction is skipped.

SET a[] b Sets I/O id a to the value of b. No zero flag update.
SETB a[] b[] d[] Read a and set bit b and puts the result into d.
GETB a[] b[] d[] Read a bit position b and puts the result into d.
CLRB a[] b[] d[] Reads a and clear its bit position b and puts the result into

d.
TSTB a[] b[] d[] Reads a and test its position b and puts the result into d.

Zero bit updated with result.
ADD a[] b[] d[] Adds a and b and puts the result into d. Zero bit updated

with result.
SUB a[] b[] d[] Subtracts b from a and puts the result into d. Zero bit

updated with result.
DIV a[] b[] d[] Divides a by b and puts the result into d. Zero bit updated

with result.
MOD a[] b[] d[] Divides a by b and puts the residue into d. Zero bit updated

with result.
MUL a[] b[] d[] Multiplies a by b and puts the result into d. Zero bit updated

with result.
DEC a Decrements a by 1. Zero bit updated.
INC a Increments a by 1. Zero bit updated.
AND a[] b[] (d[]) Logical AND's a with b and optionally puts Boolean result

into d. Zero bit updated.
ANDB a[] b[] (d[]) Bitwise AND's a with b and optionally puts bitwise AND

result into d. Zero bit updated.
OR a[] b[] (d[]) Logical OR's a with b and optionally puts Boolean result

into d. Zero bit updated.
ORB a[] b[] (d[]) Bitwise OR's a with b and optionally puts bitwise OR result

into d. Zero bit updated.
XOR a[] b[] (d[]) Logical XOR's a with b and optionally puts Boolean result

into d. Zero bit updated.
XORB a[] b[] (d[]) Bitwise XOR's a with b and optionally puts bitwise result

into d. Zero bit updated.
ANDT a[] b[] (d[]) Logical AND's a with b and optionally puts Boolean result

into d. Zero bit updated. Skip next line if zero.
ANDBT a[] b[] (d[]) Bitwise AND's a with b and optionally puts bitwise AND

result into d. Zero bit updated. Skip next line if zero.
ORT a[] b[] (d[]) Logical OR's a with b and optionally puts Boolean result

into d. Zero bit updated. Skip next line if zero.
ORBT a[] b[] (d[]) Bitwise OR's a with b and optionally puts bitwise OR result

into d. Zero bit updated. Skip next line if zero.
XORT a[] b[] (d[]) Logical XOR's a with b and optionally puts Boolean result

into d. Zero bit updated. Skip next line if zero.
XORBT a[] b[] (d[]) Bitwise XOR's a with b and optionally puts bitwise result

into d. Zero bit updated. Skip next line if zero.
BNZ (a) b If the optional a operand is specified it is tested for a non-

zero value. If a is not specified then the zero bit is tested for

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 8

non-zero. If true then program jumps to label specified in
operand b.

BZ (a) b Same as BNZ but tests for zero value.
CNZ (a) b Same as the branch instruction but calls a subroutine

instead of branching. See section on program address stack.
CZ (a) b Same as above but tests for zero result.
CALLSUB a Calls subroutine with label a. See section on program

address stack.
GOTO a Branches to program address specified by label a.
DELAY a Delay instruction, delay specified in 1/1000 seconds. This

delay is blocking delay, so that next PLC instruction will
not execute until delay is over.

NOP A no operation instruction.
RET A return from subroutine instruction.
EMAIL a Sends email, a = message ID to send EM1 - EM8.
X10 a b c a: house code 0-15, b: device code 0-15, c: ON, OFF,

BRIGHT, DIM
WEBSET a b a: URL1-8, b: number or VAR, RAM or any other readable
SIND a b a: degree, b: VAR or RAM to store the result
COSD a b a: degree, b: VAR or RAM to store the result
TAND a b a: degree, b: VAR or RAM to store the result
ROTL a b c a: source register, b: number of bits; c: result register

rotate to the left, overflow bits will be feed into right
ROTR a b c a: source register, b: number of bits; c: result register

rotate to the right, overflow bits will be feed to the left
SETLED 0|1|2 0 to turn off green LED, 1 to turn on green LED, 2 default

blinking.
IPTS a b reading TTL input last state change time tick counts. 2nd

paramter b is which TTL inut, first parameter a has the
value.

IPEDGE undefined not implemented yet
I2CREAD a b c a: send ack, b: send stop, c: byte to read
I2CWRITE a b c a: send start, b: send stop, c: byte to write
SPIBYTE a b c a: mode, b: send byte, c: byte read from bus
PING a b b a: accesslist#, b: timeout 0.5ms, c: return value -1= failed,

others 0.01ms response time from host
SAVE a b a is a string variable name for the USB key variable name,

b is data type
LOAD a b a is a string variable name for the USB key variable name,

b is data type
KEYUP return true or false
KEYDOWN return true or false
KEYLEFT return true or false
KEYRIGHT return true or false
KEYENTER return true or false
KEYEXIT return true or false
PRINT1 a one or more double quoted string
PRINT2 a one or more double quoted string
SPRINTF a b c a can be PRINTBUF1 or PRINTBUF2

b can be “%1F” to “%4F” to have 1 to 4 floating format, it

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 9

can also be “D” for formatting number to string
c is the variable value input
example: SPRINTF printbuf1 “%2f” t1

STRCAT a b c a can be PRINTBUF1 or PRINTBUF2
b can be PRINTFBUFx or string constant “something”
c can be the string to append

END End of main program. This instruction will set the program
counter back to zero and the program will start executing
from the beginning.

Operands
An operand can be any of the following:

• a signed 32 bit decimal number. e.g. 100 or 1 or 0 etc.

• a hexadecimal number. e.g. 0xABF.

• a date stamp in the format MM/DD/YYYY e.g 02/10/2010

• a time stamp in the format HH:MM:SS e.g. 20:25:00

• a day of week identifier enclosed in single quotes e.g. 'sun'. Day of week

identifiers are 'sun' 'mon' 'tue' 'wed' 'thu' 'fri' 'sat'

• an I/O identifier that is a place holder for the real I/O value that the PLC

engine will get at runtime. Valid I/O identifiers are explained in next section.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 10

2.3 WebControlTM PLC I/O Identifiers
The following are the valid I/O identifiers

 OP1 TTL Outputs 1...16 Valid range 0 - 1

 OP2

 OP3

 OP4

 OP5

 OP6

 OP7

 OP8

 OP9

 OP10

 OP11

 OP12

 OP13

 OP14

 OP15

 OP16

 IP1 TTL Inputs 1...8 Valid range 0 - 1

 IP2 When non-blocking delay added to these input,

 IP3 its value will return TRUE, if input from 0->1

 IP4 longer than the delay value. For example,

 IP5 IP1[1000] will return FALSE, if TTL input 1 from 0

 IP6 to 1 last state change shorter than 1000ms.

 IP7 IP1[1000] return TRUE only when input 1 from 0 to 1

 IP8 and stay at logic 1 for longer than 1000ms.

 IP9

 IP10

 IP11

 IP12

 IP13

 IP14

 IP15

 IP16

 IPINV1 TTL Invert Inputs 1...8 Valid range 0 - 1

 IPINV2 This is exactly same TTL input as IP1,..IP8

 IPINV3 except is inverted for filter short pulse purpose

 IPINV4 its usage is like: IPINV1[1000] to filter 1->0

 IPINV5 pulse shorter than 1000ms. If 1->0 pulse is shorter than

 IPINV6 1000ms, it will return false. Only when input state

 IPINV7 changed from 1 to 0 and stay that level for longer than

 IPINV8 1000ms, the value will be TRUE.

 IPINV9

 IPINV10

 IPINV11

 IPINV12

 IPINV13

 IPINV14

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 11

 IPINV15

 IPINV16

 AIP1 Analog Inputs 1...8 Valid range 0 - 1024

 AIP2 AIP1 to AIP8 are built-in A/D converters.

 AIP3

 AIP5

 AIP6

AIP7

AIP8

AIP9 humidity sensor raw ADC output value

AIP10 user accessible unsigned 16 bit number storage

AIP11 user accessible unsigned 16 bit number storage

AIP12 user accessible unsigned 16 bit number storage

AIP13 user accessible unsigned 16 bit number storage

AIP14 user accessible unsigned 16 bit number storage

AIP15 user accessible unsigned 16 bit number storage

AIP16 user accessible unsigned 16 bit number storage

 T1 Temperature sensor inputs 1...16 Valid range -550 - +1250.

 T2 Note that temperature values are specifies in 10's of

 T3 degrees. So to test for 21.6 degrees C you would use the

 T4 value 216.

 T5

 T6

 T7

 T8

 T9

 T10

 T11

 T12

 T13

 T14

 T15

 T16

 …

 T32

 TS1 Temperature sensor state 1 or 0.

 TS2 1 == GOOD sensor, 0 == bad sensor

 TS3

 TS4

 TS5

 TS6

 TS7

 TS8

 TS9

 TS10

 TS11

 TS12

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 12

 TS13

 TS14

 TS15

 TS16

 …

 TS32

 H1 Humidity sensor valid range 0 - 100

 EM1 Email identifiers 1...8

 EM2

 EM3

 EM4

 EM5

 EM6

 EM7

 EM8

 EM9

 EM10

 EM11

 EM12

 EM13

 EM14

 EM15

 EM16

 URL1 WEBSET these URLs 1...8

 URL2

 URL3

 URL4

 URL5

 URL6

 URL7

 URL8

 CD Current date mm/dd/yyyy format

 CT Current time hh:mm:ss format

 CDW Current day of week

 CH Current hour of day

 CM Current minute of hour

 CS Current second of minute

 CDAY Current day of month

 CMONTH Current month of year

 CYEAR Current year

 CTS Current total seconds since 1/1/2000 (based on local clock)

 VAR1 32 bit signed integer variables 1...16

 VAR2 The value will be displayed in System Status

 VAR3 Delay operator is valid on these

 VAR4 It will help debug your program, if you store debug

 VAR5 value in VARx.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 13

 VAR6

 VAR7

 VAR8

 VAR9

 VAR10

 VAR11

 VAR12

 VAR13

 VAR14

 VAR15

 VAR16

 RAM1 32 bit signed integer general purpose RAM 1...16. Delay

 RAM2 operator is not valid on these. Not displayed anywhere

 RAM3

 RAM4

 RAM5

 RAM6

 RAM7

 RAM8

 RAM9

 RAM10

 RAM11

 RAM12

 RAM13

 RAM14

 RAM15

 RAM16

 PWM1 Pulse Width Modulation output

 PWM2

 PWM3

 PWM4

 COUNTER1, TTL IP5

 COUNTER2, TTL IP6

 COUNTER3, TTL IP11

 RAM1H 16 bit signed integer general purpose RAM 1...8. Delay

 RAM2H operator is not valid on these. Not displayed anywhere

 RAM3H store in the SAME RAM location as RAM1-8 higher 16 bits

 RAM4H

 RAM5H

 RAM6H

 RAM7H

 RAM8H

 RAM1L 16 bit signed integer general purpose RAM 1...8. Delay

 RAM2L operator is not valid on these. Not displayed anywhere

 RAM3L store in the SAME RAM location as RAM1-8, lower 16 bits

 RAM4L

 RAM5L

 RAM6L

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 14

 RAM7L

 RAM8L

 RAMB10 8 bit signed integer general purpose RAM 1...8. Delay

 RAMB20 operator is not valid on these. Not displayed anywhere

 RAMB30 store in the SAME RAM location as RAM1-8, byte 0 location

 RAMB40

 RAMB50

 RAMB60

 RAMB70

 RAMB80

 RAMB11 8 bit signed integer general purpose RAM 1...8. Delay

 RAMB21 operator is not valid on these. Not displayed anywhere

 RAMB31 store in the SAME RAM location as RAM1-8, byte 1 location

 RAMB41

 RAMB51

 RAMB61

 RAMB71

 RAMB81

 RAMB12 8 bit signed integer general purpose RAM 1...8. Delay

 RAMB22 operator is not valid on these. Not displayed anywhere

 RAMB32 store in the SAME RAM location as RAM1-8, byte 2 location

 RAMB42

 RAMB52

 RAMB62

 RAMB72

 RAMB82

 RAMB13 8 bit signed integer general purpose RAM 1...8. Delay

 RAMB23 operator is not valid on these. Not displayed anywhere

 RAMB33 store in the SAME RAM location as RAM1-8, byte 3 location

 RAMB43

 RAMB53

 RAMB63

 RAMB73

 RAMB83

 RAM1B1 1 bit access to purpose RAM 1 only. This only availavble

 RAM1B2 for RAM1 Delay operator is not valid on these. Not displayed

 … anywhere， store in the SAME RAM1 location

 RAM1B32

 UROM1 32 bit signed integer user value stored in EEPROM

 UROM2 read only, value sets through general tab on web GUI.

 UROM3

 UROM4

 UROM5

 UROM6

 UROM7

 UROM8

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 15

 STR1 string table are stored in the web GUI sting table

 STR2 configuration, each string length not exceed 127 bytes

 STR3

 STR4

 STR5

 STR6

 STR7

 STR8

 STR9

 STR10

 STR11

 STR12

 STR13

 STR14

 STR15

 STR16

 STR17

 STR18

 STR19

 STR20

 STR21

 STR22

 STR23

 STR24

 STR25

 STR26

 STR27

 STR28

 STR29

 STR30

 STR31

 STR32

 KEYUP,

 KEYDOWN,

 KEYLEFT,

 KEYRIGHT,

 KEYENTER,

 KEYEXIT,

 COUNTER 32 bit counter can be read, compare, or set

 //FCOUNTER read only, frequency per second up to 2MHz.

WSRPLY read and write, automatically set by web server during WEBSET

call when server specified a value like "SET_WC=12345678".

LED read and write, When read 0 means LED is off, 1 means LED is

on, 2 means LED is heart beat. When write, valie is 0,1,or 2.

 ALLINS read only, All 8 TTL as a byte. Only in 3.02.17a firmware

 ALLOUTS read write, All 8 TTL output as a byte, only in 3.02.17a

firmware.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 16

 PRINTBUF1 16 byte string variable for SPRINTF, STRCAT, and PRINTx

 PRINTBUF2 16 byte string variable for SPRINTF, STRCAT, and PRINTx

 IPADDR 32 bit read only number contains board IP address

 IPGATE 32 bit read only number contains board gateway address

2.4 WebControl PLC Examples

For best understanding how PLC logic working, you can try to copy and paste the
examples below into your WebControl PLC program screen to check them out.
Please note PLC logic will execute from START to END. Then it will continue from
START to END, forever repeating. If you last line of PLC code could skip next
instruction, like those TST instruction, it might skip your first line when condition met.
Please do pay attention to it. If you use CALLSUB to run subroutine, after finishing
the subroutine, the logic will return back to where CALLSUB called and continue.

2.4.1 Example 1 Set Output based on condition

Control incubator heater connected to TTL output 1. If temperature T3 is less than 37
degree C turn ON the heater; if T3 is greater or equal to 39 degree C, turn the heater
OFF,.

START
 TSTLE T3 370 OP1
 NOP
 TSTGT T3 389
 SET OP1 0
END

However, this does not work, when temperature reached above 37 degree C, the
OP1 turned off, instead of reaching to 39 degree C. The problem is the OP1 can be
set to ON or OFF by the “TSLE T3 370 OP1” line alone. To reduce heater relay
constantly turning ON and OFF, it is better to have two subroutines to handle the
OP1 state.

START
 TSTLE T3 370
 CALLSUB HEAT_ON
 TSTGT T3 389
 CALLSUB HEAT_OFF
END

HEAT_ON:
 SET OP1 1
RET

HEAT_OFF:

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 17

 SET OP1 0
RET

What if the heater relay stuck, or the heater elements burn out? You can add
additional function in this PLC program to send you email notice or sound an alarm
for such a situation.

2.4.2 Example 2: Flash TTL output

Flashes output 2 at a rate of 1Hz. (Please note OP2[500] has no space in between
which delays 500ms). Please note the delay function used in this example, which is
non-blocking, that means the PLC logic will immediately execute next TSTEQ
instruction until the delay is over.

START

TSTEQ OP2[500] 0
SET OP2 1
TSTEQ OP2[500] 1
SET OP2 0

END

Another way to implement this is:

START

XOR OP2 1 OP2
 DELAY 500
END

2.4.3 Example 3: Push Button Input Control Output

When a push button connected to TTL input 1 being pushed, set the TTL output 3
ON.

START
 TSTEQ IP1 1 OP3
 TSTEQ OP3 1
 SET OP3 0
END

Although this example works, it has flaw. Because all the pushbutton switches from
market will not have clean instant ON or OFF, they actually produce a bunch of ON
and OFF signals when pushed. If you use a scope to watch IP1 input line or OP3
output line, you will see they are many ON and OFF pulses during pushing or
releasing the button. The better way to handle the case is like Example 10 later in
this manual. However, if TTL OIP1 connected to a clean signal source, this example
does work well.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 18

2.4.4 Example 4: Send EMAIL

 To send email 1 when T3 – T2 >= 20 degrees you would use:

START
 SUB T3 T2 RAM1
 TSTGE RAM1 200

EMAIL EM1
END

The above rule is a bit too simple because an email will constantly be generated
while RAM1 is greater than or equal to 200. (20 degrees in this case) To guard
against that the following logic should be considered. This implementation will only
send one email when the temperature comparison beyond the range. If you turn on
heater or cooler instead of sending email, similar consideration also should be
excised:

 START
 SET RAM2 0
 LOOP:
 SUB T3 T2 RAM1
 TSTGE RAM1 200 RAM1
 GOTO SEND
 SET RAM2 0
 GOTO LOOP
 END

 SEND:
 BNZ RAM2 LOOP
 SET RAM2 1
 EMAIL EM1
 GOTO LOOP

Please note in SEND portion of the code, RAM2 is being checked, if it is already 1, it
will skip sending email. Only when RAM2 == 0, an email will be send. Only when
RAM1 < 200, the LOOP will skip SEND logic and reset RAM2 to 0.

2.4.5 Example 5, Parallel I/O

This simple program performs 4 separate I/O checks and sets OP1 to OP4 states.
In this example, we use subroutine feature of the PLC logic. Although in this case,
GOTO can do same thing as CALLSUB, CALLSUB can help program more readable.
In certain logic, you have to use CALLSUB instead of GOTO, depending on the logic
flow. We will explain more when we run into those examples.

The logic in this example follows:

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 19

 OP1 is set if T3 > 50

 OP1 is cleared if T3 < 50

 OP2 is set if IP1 == 1 for more than 300ms

 OP2 is cleared if IP1 == 0

 OP3 is set if AIP1 + AIP2 > 1024

 OP3 is cleared if IP4 == 1

 OP4 is set if OP1 == 1

 OP4 is cleared if OP1 == 0

The PLC code written for the above scenarios would be as follows:

START
 CALLSUB checkOP1
 CALLSUB checkOP2
 CALLSUB checkOP3
 CALLSUB checkOP4
END

checkOP1:
 TSTGT T3 500 OP1
 RET

checkOP2:
 TSTEQ IP1[300] 1 OP2
 RET

checkOP3:
 ADD AIP1 AIP2 RAM1
 TSTGT RAM1 1024
 BNZ l1
 TSTEQ IP4 1
 BNZ l2
 RET

l1:

SET O3 1
 RET

l2:

SET O3 0
 RET

checkOP4:
 TSTEQ OP1 1 OP4
 RET

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 20

Please note in this example, we assume the TTL input, analog input and temperature
reading are all perfect, no bouncing up and down. In reality, you have to add
consideration to it.

2.4.6 Example 6, Sequential I/O

The following simple program shows how to set-up sequential I/O.

 OP1 is set when IP1 rises from 0 to 1
 OP4 is cleared when IP1 rises from 0 to 1
 OP1 is cleared when O4 == 1
 OP2 is set when T3 > 25 AND OP1 == 1
 OP2 is cleared when OP1 == 0
 EMAIL1 is sent when OP2 is set
 O4 is set when OP2 == 1 for more than 1 second

The assembly language written for the above scenario would be as follows:

 START
 BNZ IP1 start
 l1:

TSTEQ IP1 1
 BZ l1
 SET OP1 1
 SET OP4 0

 l2:

TSTGT T3 250 RAM1
 AND OP1 RAM1
 BZ l2
 SET OP2 1
 EMAIL EM1

 l3:

TSTEQ OP2[1000] 1
 BZ l3
 SET OP4 1
 SET OP1 0
 END

Please note in this example, we assume the TTL input, analog input and temperature
reading are all perfect, no bouncing up and down. In reality, you have to add
consideration to it.

2.4.7 Example 7, Traffic Lights

This example will let pedestrian to push a button to change the light on a busy street,
so that he can cross the street safely. IP1 hooks up to the pedestrian crossing button.
If someone pushed cross button, the street will have amber light on for 10 seconds,

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 21

then red light to stop all the cars, allowing pedestrian to cross street in next 30
seconds. At the end of 30 seconds, it will flash the amber and red light for 5 seconds.
VAR1 in the main program will let the crossing light turn on every 100 seconds, does
not matter anybody push the crossing button or not.
OP1 Red + Pedestrian crossing light
OP2 Amber
OP3 Green
IP1 Pedestrian Push Button

START
 CALLSUB LIGHTS_GO
loop:
 SET VAR1[10000] 1
loop1:
 TSTEQ IP1 1
 BNZ sr
 BZ VAR1 sr
 GOTO loop1
sr:
 CALLSUB STOP
 GOTO loop
END

LIGHTS_ST:
 SET OP1 1
 SET OP2 0
 SET OP3 0
 RET

LIGHTS_GO:
 SET OP1 0
 SET OP2 0
 SET OP3 1
 RET

LIGHTS_AM:
 SET OP1 0
 SET OP2 1
 SET OP3 0
 RET

STOP:
 CALLSUB LIGHTS_AM

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 22

 DELAY 5000
 CALLSUB LIGHTS_ST
 DELAY 60000
 CALLSUB LIGHTS_AM
 SET RAM2 5
flash:
 XOR OP2 1 OP2
 DELAY 500
 DEC RAM2
 BNZ flash
 CALLSUB LIGHTS_GO
 RET

2.4.8 Example 8, Time based Control

WARNING: For time critical application, please make sure to check CYEAR correct

before taking action based on system clock. When WebControlTM boot up, it will uses

ROM hard coded time in 2011. If PLC reporting year 2011, the NTP or real time clock

has not sync the local clock yet.

This example will have five subroutines. WebControlTM PLC will continuously loop

through them. The “HOURLY” routing will compare analog input 1 and analog input 2,

if A1 - A2 > 10, send an email notice 1. You can use similar logic to adjust your solar

panel orientation each hour, etc. The “PERIOD” subroutine will turn on night light

hooked up to OP1 after 18:00 hours and turn it off at 5AM. The “DAILY” subroutine

will start the water sprinkler at 6:30AM for four zones. The “MONTHLY” routing will

check the “salt low” sensor AIP3 on the water softener and send email notice 2. The

“YEARLY” routing will ring the New Year’s bell connected to OP6 on each and every

New Year’s Day for the whole day!

START
 CALLSUB HOURLY
 CALLSUB PERIOD
 CALLSUB DAILY
 CALLSUB MONTHLY
 CALLSUB YEARLY
END

HOURLY:
 TSTNE RAM1 CH
 GOTO T1
RET

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 23

T1:
 SET RAM1 CH
 SUB AIP1 AIP2 RAM2
 TSTGT RAM2 10
 EMAIL EM1
RET

PERIOD:
 TSTGE CH 18 RAM2
 NOP
 TSTLE CH 5 RAM3
 NOP
 OR RAM2 RAM3 OP1
RET

DAILY:
 TSTEQ CH 7
 SET RAM5 0
 TSTEQ CH 6
 BZ NOTYET
 TSTGT CM 30
 CALLSUB WATERING
NOTYET:
RET

MONTHLY:
 TSTNE RAM4 CMONTH
 GOTO T2
RET

T2:
 TSTLE CH 8
 GOTO 2EARLY
 SET RAM4 CMONTH
 TSTLT AIP3 20
 EMAIL EM2
2EARLY:
RET

YEARLY:
 TSTEQ CMONTH 1 RAM2
 NOP
 TSTEQ CDAY 1 RAM3
 NOP
 AND RAM2 RAM3 OP6
RET

WATERING:
 BNZ RAM5 W_DONE

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 24

ZONE1:
 SET OP2 1
 TSTLE CM 35
 GOTO ZONE1
 SET OP2 0
ZONE2:
 SET OP3 1
 TSTLE CM 40
 GOTO ZONE2
 SET OP3 0
ZONE3:
 SET OP4 1
 TSTLE CM 45
 GOTO ZONE3
 SET OP4 0
ZONE4:
 SET OP5 1
 TSTLE CM 50
 GOTO ZONE4
 SET OP5 0
 SET RAM5 1
W_DONE:
RET

Please note in DAILY subroutine, we call another subroutine “watering”. In this place,
we have to use subroutine, since we only want to call this routine after 6:30AM. If
current minute is not 30, we will skip. Watering will be done before 7AM, so that we
clear the flag RAM5 at 7AM. Also, please notice RAM1, RAM4 and RAM5 are holding
static value and RAM2 and RAM3 are temporary storage being used by more than
one subroutine. You can decide which RAM is for temporary data, which is for static
value.

In the PERIOD subroutine, we constantly compare the time and set the OP1 ON or
OFF. That is okay for solid state relay or other control relay, since the logic level did
not change all the time. However, if you are sending a X10 command to turn on and
off different lights, you want to make sure the X10 command only issued once, not
repeatedly. You may create another subroutine in which set flag only calls
X10 1 15 ON
only once to turn ON light at house code 2, unit code 16 (please note WebControl’s
X10 house code range 0-F, and device code range also 0-F.)

In the MONTHLY routine, we first check the current hour being 8AM then we check
the water softener’s salt level. In this way you will not be waked up by email in the
midnight.

When program WebControl PLC for time based logic, please make sure the time
being used in different part of the program having no conflict between all the
subroutines. If you want two things to happen at the same time, you should consider
combine them into same routine to handle.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 25

2.4.9 Example 9, Battery Charger

This is a PLC program to charge 3 serially connected NiMH batteries. First, it tries to
discharge the batteries individually. If any battery discharged to 1V, it will stop the
discharge and start charging. When each cell is being charged to 1.25V, it will stop
charging. We assume the A1, A2, and A3 being calibrated to 1V=100. The
measurement on the battery 2 is the total voltage of battery 1 and battery 2. And the
measurement on battery 3 is the total voltage of all three batteries. This example will
individually discharge and charge each battery.

start

set op1 1
set op2 1
set op3 1
set RAM1 0
set RAM2 0
set RAM3 0

loop:
cnz op1 check_b1
cnz op2 check_b2
cnz op3 check_b3

goto loop
end
check_b1:

BNZ RAM1 c1
tstle AIP1 100 RAM1
bz e1

c1:
tstgt AIP1 125
bnz e1
set op1 0
set op4 1

e1:
ret
check_b2:

BNZ RAM2 c2
sub AIP2 AIP1 RAM4
tstle RAM4 100 RAM2
bz e2

c2:
sub AIP2 AIP1 RAM4
tstgt RAM4 125
bnz e2
set OP2 0
set OP5 1

e2:
ret
check_b3:

BNZ RAM3 c3
sub AIP3 AIP2 RAM4

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 26

sub RAM4 AIP1 RAM4
tstle RAM4 100 RAM3
bz e3

c3:
sub AIP3 AIP2 RAM4
sub RAM4 AIP1 RAM4
tstgt RAM4 125
bnz e3
set OP3 0
set OP6 1

e3:
ret

2.4.10 Example 10, RFID reader and browser Control

For office door using RFID reader, as well as allowing operator remote browser
control, the following program provided the example. RFID reader’s NC (normally
connect) output connects to IP1 on WebControl digital input. A 2.2K pull-up resistor
also connected between IP1 and 5V. In this way, each time a valid RFID tag sensed,
a TTL “1” feeds to WebControl IP1. Remote operator can also open the door by
using browser set OUTPUT TTL1 to on. OP1 connects to the door open switch.
TESTEQ logic will make sure the OP1 is an 1 second momentary output.

“LIGHTS” subroutine is for light control outside the office door; the light is on at 7PM
and off at 5AM.

START
 CALLSUB LIGHTS
 TSTEQ RAM1 0
 CALLSUB SET_OP1
 CALLSUB CHK4LOW
 TSTEQ OP1[1000] 1
 SET OP1 0
END

CHK4LOW:
 TSTEQ IP1 0
 SET RAM1 0
 RET

SET_OP1:
 TSTEQ IP1 1 RAM1
 SET OP1 1
 RET

LIGHTS:
 TSTGE CH 19 RAM2
 NOP
 TSTLE CH 5 RAM3
 NOP

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 27

 OR RAM2 RAM3 OP3
 RET

In this logic, SET_OP1 must be subroutine, if “TSTEQ RAM1 0” it will call the
subroutine SET_OP1, but if RAM1 != 0, then it will skip that call. In this way, we can
guarantee OP1 only being turn on once. In the subroutine SET_OP1, it checks if
RFID reader did detected valid RDID card present. If so, it will set the flag RAM1 to
true, so that not being set over and over again. For gate opening device, this will
make sure the gate will not left open all the time.

2.4.11 Example 11, Bitwise Operation

There are ANDB, ORB, and XORB operator operate on the VAR or RAM on the bit
basis. This will allow each RAM or VAR to store up to 31 binary states. When VAR1
stores value 12345, and RAM1 stores value 256, after execute
ANDB VAR1 RAM1 VAR1
VAR1 stores the value 0

After execute:
ORB VAR1 RAM1 VAR1
VAR1 stores the value 123712

XORB VAR1 RAM1 VAR1
First execution will be 123712, if execute next time, VAR1 will be back to 12345. In
another word, XORB can toggle the bit.

2.4.12 Example 12, Angle Calculation

From 3.02.16c firmware, angle calculation is supported. In PLC program, users can:
SIND 91 VAR1
Or
COSD 185 VAR2
Or
TAND 630 VAR3
The result for SIND and COSD is x1000, because we can only have integer on this
processor. The result for TAND is x100.

2.4.13 Example 13, Non-Blocking Delay

Non-blocking delay is expressed in PLC code as [] next to the operators. The
number inside [] is micro-seconds. The [] operation can be on both operators during
TST operations. Each input and output and VAR associated with a non-blocking
delay timer value. That value is set when I/O state is changed or VAR value being
modified. If later PLC instruction using non-blocking delay, that timer value will be
referenced. If current time is less than stored timer time plus the delay period, the
specified operation will not be performed. Reading value with non-blocking delay will
return false if timer value is not meet For example,

TSTGT VAR1[1500] IP1[300] RAM2
If any of those delay not reached, its result will be FALSE.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 28

For SET VAR1[15000] IP1
VAR1 will not be set to IP1 value, unless 15000 milliseconds (15seconds) passed.

2.4.14 Example 14, WEBSET to get server reply

WebControl allows PLC call WEBSET to do HTTP GET call to HTTP servers inside
another WebControl or other devices, or Apache or IIS servers. The web server CGI
code can process that information. The web server can also send back to the
WebControl a specially formatted string. When WebControl received that string, it will
set an internal variable for user PLC code to reference. Following is an example CGI
code from apache server that will set the WebControl WSRPLY in the WebControl.
PLC program can base on that reply to turn on or off an I/O bit or take any other
action.

Because PLC code does not execute WEBSET call immediately, rather WEBSET is
on a scheduler called from queue, user can not expect to get server reply
immediately after WEBSET call. The good practice would to check if the WSRPLY
value is zero, if that is zero, the server reply has not fetched back yet. Server must
return a non-zero value back. If WSRPLY is non-zero, user PLC must read it into
another variable and set it to zero, so that it can be used for next WEBSET call. In
this sense, if PLC logic wants to get multiple values from server reply, it must issue
one call at a time to avoid different WEBSET call return value clashing.

2.4.15 Example 15, Server CGI Handles WEBSET

The code below is for demonstration only, it is written in C on apache server. We do
not provide support for writing server CGI code. Please note to get the best result,
server CGI code should write back the string as early in the reply as possible. In
HTTP server reply processing, server mostly after sending reply will close
connection. If the “SET_WC=2147483647” string sending out too late, it could get
lost because the connection is closed already. Please test and make sure your
server is response fast enough for the WEBSET call.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

char *data, *remote_mac, *remote_host;

long m,n;

FILE *fp;

char buffer[18] = "\r\nnew get call\r\n";

printf("%s%c%c\n",

"Content-Type:text/plain;charset=iso-8859-1",13,10);

data = getenv("QUERY_STRING");

remote_mac = getenv("HTTP_USER_AGENT");

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 29

remote_host = getenv("REMOTE_ADDR");

fp = fopen("/tmp/webcontrol.txt", "w+");

fwrite(buffer, 1, strlen(buffer), fp);

if(data != NULL) {

fwrite(data, 1, (unsigned int) strlen(data), fp);

fwrite(buffer, 1, strlen(buffer), fp);

}

if(remote_host != NULL) {

fwrite(remote_host, 1, (unsigned int) strlen(remote_host), fp);

fwrite(buffer, 1, strlen(buffer), fp);

}

if(remote_mac != NULL) {

fwrite(remote_mac, 1, (unsigned int) strlen(remote_mac), fp);

fwrite(buffer, 1, strlen(buffer), fp);

} else

fwrite(buffer, 1, strlen(buffer), fp);

/***

put your logic here if MAC address not match then do what

You can simply return with an error message

**/

/**

Now, you can process the data string send in by WebControl

**/

printf("to push up to 10 bytes to WebControl SET_WC=-2147483647\n");

printf("close connection\n");

fclose(fp);

return 0;

}

2.4.16 Example 16, USB key SAVE and LOAD functions

We now have the load/save user values to the usb pen drive too. Two new PLC

instructions are available LOAD and SAVE that can be used by the user to save the

values of I/O ID’s to the flash drive. They are used like this:

 LOAD “myval” RAM1

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 30

to read back saved “myval” to RAM1. Or write to USB pen drive:

 SAVE “myval” IP2

Or

LOAD “myval” PWM2

to load “myval” to USB drive. The first operand must be a string literal ; this is used

as the name of the value. You will see that all of these name value pairs are stored

on disk as a xxx.dat file where xxx is the name given by the string literal operand. (file

is binary for ease of processing when loading and saving).

Note that these instructions will fail if a USB drive is not attached or the value does

not exist on a LOAD. In which case the next instruction is skipped i.e.

LOAD “value1” RAM2

CALLSUB dowork ; this instruction is skipped if the load fails.

GOTO start

Similarly:

SAVE “value1” RAM2

CALLSUB dowork ; this instruction is skipped if the save fails.

GOTO start

Once again note that the LOAD and SAVE instructions are very slow and will slow

down the execution of the PLC program and hog CPU bandwidth so user should use

them with care and avoid calling these too often.

2.4.17 Example 17, USB LCD Display and Push Kay functions

The following example shows how to read from the UM216 key stoke and display

information to the LCD display through PLC program.

START

 PRINT1 "PRESS A KEY"

BEGIN:

 TSTEQ KEYUP 1

 GOTO KUP

 TSTEQ KEYDOWN 1

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 31

 GOTO KDOWN

 TSTEQ KEYLEFT 1

 GOTO KLEFT

 TSTEQ KEYRIGHT 1

 GOTO KRIGHT

 TSTEQ KEYENTER 1

 GOTO KENTER

 TSTEQ KEYEXIT 1

 GOTO KEXIT

 PRINT2 ""

 GOTO BEGIN

KUP:

 PRINT2 "UP =" "PRESSED"

 GOTO BEGIN

KDOWN:

 PRINT2 "DOWN =" "PRESSED"

 GOTO BEGIN

KLEFT:

 PRINT2 "LEFT =" "PRESSED"

 GOTO BEGIN

KRIGHT:

 PRINT2 "RIGHT =" "PRESSED"

 GOTO BEGIN

KENTER:

 PRINT2 "ENTER =" "PRESSED"

 GOTO BEGIN

KEXIT:

 PRINT2 "EXIT =" "PRESSED"

 GOTO BEGIN

 END

2.4.18 Example 18, I2C PLC Programming ADS1115

The following example shows how to communicate to a 16 bit ADC chip on I2C bus

through PLC program.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 32

START
 CALLSUB ADS1115
END

ADS1115:
 I2CWRITE 1 0 144 # I2c start, write address for chip
 # with addr connected to ground
 I2CWRITE 0 0 1 # configuration register address is 1
 I2CWRITE 0 0 193 # single end AINp = A0, full scale
 # 6.144V, one shot conversion,
 # see page 18-19
 I2CWRITE 0 1 131 # 128 sample/s, disable comparator,
 DELAY 10 # wait for conversion done, WC8 stop
 # write to chip
 I2CWRITE 1 0 144 # I2c starts, write to chip on this
 # I2c address
 I2CWRITE 0 1 0 # tell ADS1115 we address register 0,
 # send STOP
 I2CWRITE 1 0 145 # I2c starts, tell chip we will read
 BNZ NO_DEV # if device exist? not, then do not
 # read <<---- change
 I2CREAD 0 0 RAM11 # reads MSB byte, notice ADS1115
 # require ACK, which is zero in ACK
 # bit
 I2CREAD 0 1 RAM10 # reads lower byte, send stop to tell
 # ADS1115 no more read
 MUL RAM1L 1872 VAR1 # 1872 is the scale factor for 6.144
 # full scale reading
 DIV VAR1 10000 VAR5 # divide by 10000 to set value to
 # 0.001V scale, store in VAR5
 RET
NO_DEV:
 I2CWRITE 1 1 144 # release I2C bus by insert STOP bit
 # to bus <<---- must
 SET VAR5 0 # ADS1115 not on I2C bus, so set VAR5
 # to zero
RET

Since firmware 4.02.09, WC32 firmware supports DS1307 I2C RTC in the firmware.

When writing PLC program with I2C support, user need to pay attention to make

sure if the target I2C device is not on the bus, PLC program needs to send stop bit to

release I2C bus for kernel to read and write to RTC chip on the same I2C bus.

2.4.19 Example 19, PING another host in PLC

The following example shows how to communicate to a 16 bit ADC chip on I2C bus

through PLC program.

START

PING 1 100 VAR1
END

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 33

where the first parameter 1 refers to the first Access Limit address in Network tab

The second parameter 100 is for waiting 100x 0.5ms

PING result will be set in 3rd parameter, in the above example, that is VAR1. If the
return value is -1, ping failed. Otherwise, the number indicated how many 0.01mS
WC32 has been waiting till ICMP reply received

2.4.20 Example 20, Display IP Address on UM216

The following example shows how to display board IP address on the UM216 USB

display.

START

 PRINT1 "IP ADDRESS"

 PRINT2 IPADDR

 DELAY 2000

 PRINT1 "IP GATEWAY"

 PRINT2 IPGATE

 DELAY 2000

END

The display will alternate every two seconds to display the board configured, or

DHCP assigned IP address and gateway address.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 34

3 WebControlTM PLC FAQ
We include some users frequently asked questions here:

3.1 Login and Configuration

1-1Q: Can you tell me how to connect with Windows Explore? I cannot communicate?
1-1A: If you have DHCP server on your network, please check with your DHCP
server log, WebControl is likely obtained an IP address from your DHCP server.
Once your find out the IP address assigned by DHCP server, you can use browser to
connect to:

http://what-ever-dhcp-assigned-ip/
You will see the login screen.

If you don′t have DHCP server on your network, WebControl's default IP address is
192.168.1.15. You must change your computer's IP address temporarily to
192.168.1.1, (make sure no other host using that IP address on your network), then
from IE browser enter:

http://192.168.1.15/
You will see the login screen.

1-2Q: I have problem to setup the clock, it does not work, even I setup my network
and DNS server correctly?
1-2A: Please check with your ISP to make sure the DNS server IP address is valid. If
you have Linux computer, you can use dig command to make sure that DNS server
IP can resolve the ntp.org. Please note that many ISPs restrict the DNS access from
outside its own IP address range. If your DNS server IP is not from your ISP, it may
not work.

dig ntp.org @your-dns-server-ip

1-3Q: What is the default user ID and password, can I change it?
1-3A: The default user ID and password is admin/password, all lower case. User can
change both user ID and password.

3.2 Temperature Sensor Support

2-1Q: What is the purpose of “Temp Sensor Config” checkbox in General tab?

2-1A: When checkbox is checked, temp sensor list displays the scanned list from 1-

wire bus. When that checkbox is unchecked, temp sensor list is from last configured

EEPROM reading back. In this way, if a configured temp sensor lost, the memory

from EEPROM will reflect the configuration, thus display fail for that sensor.

2-2Q: How many temp sensor is supported?

2-2A: WebControl™ 32 can simultaneously connect 32 optional

DS18B20/DS1822/DS18S20 based digital temperature sensors.

2-3Q: How to read temperature or sensor ROM code from command line in Linux?

2-3A: Use wget http://webcontrol-ip/gett1.cgi to read the temp sensor T1, and use

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 35

wget http://webcontrol-ip/gett1rc.cgi to read the sensor T1 ROM code.

2-4Q: What can cause my temperature sensor not display correctly?

2-4A: Use solid copper wire for your 1-wire bus, for example, CAT5 cable. Reduce

any unnecessary length of the wire. Do not hook up unsupported parts to the 1-wire

bus, since they may generate 1-wire signal causing trouble.

2-5Q: I run a long cable between the DS18B20 and WebControl, sensor does not

work?

2-5A: According to Maxim-IC, if using a long cable connecting between the sensor

and host controller, it may require to add a pull-up resistor 4.7k from 1-wire bus (DQ

pin on DS18B20) to the 5V supply near the far end of the 1-wire bus. Please check

out Maxim-IC AppNote148. You do not have to add external power, if you do not

experience any problem.

3.3 Turn on/off TTL output from another programming language

3-1Q: I want to turn on/off TTL output from Visual Basic, can I do it?

3-1A: You can reference how the browser does it and emulate that in your VB or

script. Please make sure to disable login in the "Network Setup" screen. For security

purpose, please specify the IP address in the access list, or your application sending

encrypted user ID/password in the same HTTP call. Depends on the IP address and

which TTL you want to control by programming language, you may refer to these two

browser URL lines:

http://192.168.1.15/api/setttloutput.cgi?output=1&state=1 to turn on,

http://192.168.1.15/api/setttloutput.cgi?output=1&state=0 to turn off.

and to manually set a VAR value from outside, varid from 1 to 8:

http://192.168.1.15/api/setvar.cgi?varid=1&value=23456789

from 3.02.17 firmware, WebControl supports manually set a UROM value from

outside, uromid from 1 to 4:

http://192.168.1.15/api/seturom.cgi?uromid=1&value=23456789

Command line browser wget can be used to do manually control. The above lines

maybe need in double quotes to work.

 WebControl32TM PLC Programming Guide Version 04.02.20

Copyright(c) 2008,-2017 CAI Networks, Inc. 36

3.4 Restart the board from http browser

4-1Q: I want to restart the boad from HTTP command line, can I do it?

4-1A: Depends on the IP address and which TTL you want to control by

programming language, you may refer to these two browser URL lines:

http://192.168.1.15/api/rebootcgi?start to reboot.

3.5 Power Supply Requirement

5-1Q: What kind of power required to run WebControl?

5-1A: WebControl 32 hw rev 4/5/6 hardware can operate from 7.5 to 12VDC power

supply. However, when using DC12V, the regulator will be VERY hot. It is

recommended to run on 9VDC1A power supply.

WebControl HW rev 7 changed using a switch IC to regulate the power, it can take

from 4.5V to 20VDC. It needs to provide enough current, so that its invetor chip can

provide stable power to CPU. Its Maximum absolute DC power voltage is 26VDC,

any time supply beyond that will cause permanent damage.

Please make sure power supply has good filtering capacitors. Any noise in the

power supply could cause problem during execution of WebControl PLC logic. If a

relay board is also used with WebControl, please make sure the power supply has

enough reverse current to handle the spike during relay switching.

